Small & Big Data processing philosophies

In this first post of 2013, I would like to cover some fundamental philosophical aspects of “data” & “processing”.
As the buzz around “Big Data” going on high, I have classified the original structured, relational data as “small data” even though some very large databases I have seen having 100+ Terabytes of data with an IO volume of 150+ Terabytes per day.  
Present day data processing predominantly uses Von-Neumann architecture of computing in which “Data” and its “processing” are distinct and separated into “memory” and “processor” connected by a “bus”.  Any data that need to be processed will be moved into processor using the bus and then the required arithmetic or logical operation happens on it producing the “result” of the operation. Then the result will be moved to “memory/storage” for further reference.  Also, the list of operations to be performed (the processing logic or program) is stored in the “memory” as well. One needs to move the next instruction to be carried out into the processor from memory using the bus.
So in essence both the data and the operation that needs performing will be in memory which can’t process data and the facility that can process data is always dependent on the memory in the Von-Neumann architecture.
Traditionally, the “data” has been moved into a place where the processing logic is deployed as the amount of data is small when compared to the amount of processing needed is relatively large involving the complex logic. In the RDBMS engines like Oracle read the blocks of storage into the SGA buffer cache of running database instance for processing. The transactions were modifying small amounts of data at any given time.
Over a period of time “analytical processing” that required to bring huge amounts of data from storage into processing node which created a bottleneck on the network pipe. Add to that there is a large growth in the semi-structured and unstructured data that started flowing which needed a different philosophy towards data processing.
There comes the HDFS and map-reduce framework of Hadoop which took the processing to the data. During the same time comes Oracle Exadata which took the database processing to storage layer with a feature called “query offloading”
In the new paradigm, the snippets of processing logic are being taken to a cluster of connected nodes where the data mapped with a hashing algorithm resides and results of processing then reduced to finally produce result sets. It is now becoming economical to take the processing to data as the amount of data is relatively large and the required processing is fairly simple tasks of matching, aggregating, indexing etc.,
So, we now have choice of taking small amounts of data to complex processing with structured RDBMS engines with shared-everything architecture of traditional model as well as taking processing to data in the shared-nothing big data architectures. It purely depends on the type of “data processing” problem in hand and neither traditional RDBMS technologies will be replaced by new big data architectures, nor could the new big-data problems be solved by traditional RDBMS technologies. They go hand-in-hand complementing each other while adding value to the business when properly implemented.
The non-Von-Neumann architectures still need better attention by the technologists which will probably hold the key to the way human brain processes and deals with the information seamlessly either it is structured or non-structured streams of voice, video etc., with ease. 
Any non-Von-Neumann architecture enthusiasts over here?
Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s


%d bloggers like this: